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A non-linear generalization of the diffusion equation, which describes the mass or heat transfer accompanied with chemical 
reactions, is used to consider the spreading of an initially localized distribution. The use of a renormalization group method 
enabled the nature of the solution to be analysed for long times and two characteristics of its asymptotic behaviour to be 
distinguished. When the dimension of the space is greater than a certain critical value, a state of asymptotic freedom is attained 
for which the role of non-finearity is small and the evolution of the density distribution is governed by diffusion processes. When 
the dimension is less than the critical value, the non-linear term remains substantial for long periods of time and a state of 
incomplete self-similarity of the evolution of the density distribution is established. The exponent of the exponential dependence 
of the radius of the diffusion spot on time is calculated for this case. The relation between the renormalization group method 
and perturbation theory and difficulties in substantiating the method when applied to a given problem are discussed. © 1998 
Elsevier Science Ltd. All rights reserved. 

The interest in the problem of  investigating the asymptotic behaviour of particular self-similar solutions 
of the Cauchy problem for quasilinear parabolic equations is due to the fact that the asymptotic form 
of the self-similar solution can turn out to be related to a whole class of non-self-similar initial conditions. 
The permissible self-similar asymptotic forms of the solutions of quasilinear parabolic equations, which 
are independent of  the characteristic dimensional parameters specifying the initial distribution, have 
been investigated in detail in [1]. However, such asymptotic forms do not exhaust all the possible types 
of  solutions, and other  types of  limiting solutions may exist which depend on certain integral charac- 
teristics of the initial conditions. These solutions correspond to a state of incomplete self-similarity (self- 
similarity of  the second kind [2]), when the dependence on the dimensional parameters,  specifying the 
initial distribution, does not vanish in the limit and has an effect on the exponents of  the exponential 
behaviour in the form of  corrections to the values which follow from simple dimensional considera- 
tions. The aim of this paper is to demonstrate the possibilities of using the renormalization group method 
to find solutions which correspond to a state of incomplete self-similarity. Unlike the investigations which 
have been carried out previously [1, 3], no preliminary assumptions regarding the form of  the solution 
are made when constructing the solution. 

1. F O R M U L A T I O N  OF THE PROBLEM 

Quasilinear parabolic equations are the basis of  the description of  a large number  of phenomena 
relating to mechanics, physics, technology, biology, etc. [1, 3, 4]. In particular, in the theory of  homo- 
geneous combustion and chemical kinetics, the diffusion equation (for heat or mass transfer) 

(1.1) 

is considered with a non-linear source (~, < 0) or sink (~, > 0) (the treatment below refers to thecase  
when ~. > 0). 

The physical meaning and the dimension of the constant ~. depends on the quantity n = 1 + 28. In particular, 
when 8 = 0, Eq. (1.1) is linear and the term which is proportional to ~, describes the absorption of a substance by 
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the medium. When 15 = 1/2, the non-linear term describes the change in concentration due to binary-type chemical 
reactions, coagulation processes accompanying the diffusion of aerosol particles, etc. When ~ = 3/2, Eq. (1.1) can 
be used to analyse heat transfer processes, taking into account radiation losses or radiation heating. 

To fix our ideas, we shall subsequently make use of the terminology of chemical kinetics and hence 
we shall call C(r, t) the concentration of the substance, Do the diffusion coefficient and n = 1 + 2~i the 
order of the chemical reaction. 

In order to explain the role of non-linear effects and to find the possible asymptotic forms of the 
solutions of Eq. (1.1), we shall consider the problem of the non-linear diffusive spreading of an initially 
localized density distribution in an unbounded space, and we shall seek a solution of the Cauchy problem 
(1.1) with an initial density distribution of delta-like form 

C(r, 0) = Q0~i(r) (1.2) 

This formulation of the problem is equivalent to the addition of an instantaneous source of the form 

p(r, t) = Q08(r)~i(t) (1.3) 

to the right-hand side of Eq. (1.1). The parameter  Q0 has the meaning of  the total amount  of the sub- 
stance in the space at the initial instant of time. Despite the very special form of the initial conditions 
(1.2), the investigation of problem (1.1), (1.2) is of wider interest, since these conditions introduce a 
new dimensional parameter  Q0 into the treatment, which can turn out to be important. It was assumed 
in earlier investigations that the asymptotic form must not depend on this parameter  and that it is solely 
defined by the parameters occurring in the equation. 

When ~, = 0, the solution of problem (1.1), (1.2) can be expressed in terms of Green 's  function of 
the diffusion equation G(r,  t) the relation 

I r2 ) C(°)(r,t) = QoG(r,t), G(r,t)  = [4rcDot] a/20(t) exp -4--~0 t (1.4) 

(d is the dimension of the space and O(t) is the Heaviside step function). 
When 8 = 0, the solution of Eq. (1.1) is given by the relation 

C(r, t) = Q0exp(-~)G(r, t) (1.5) 

which corresponds to an exponential decrease in the total amount of the substance in the space. 
When 8 ~ 0, the solution cannot be obtained in general form and the aim of this paper  will be to 

construct an approximate solution of the Cauchy problem. In the case of small values of 8, it can be 
assumed that the non-linear effects will be small, and it is natural to seek a solution in the form of an 
expansion in t5 while, in the case of arbitrary values of 8, an analytic extension with respect to 8 to the 
specified value can be used. In a certain sense, this procedure is analogous to the method of e-expansion, 
which has been successfully used (but without sufficient substantiation) in the theory of critical pheno- 
mena, and to the method of dimensional regularization in quantum field theory [7]. 

For small Z, the solution could be sought using perturbation theory [8]. However, in this case, the perturbation 
is singular since, when ~. = 0, the equation admits of a group with a symmetry of the scale transformation type 
r --4 ctr, t ~ ct2t and the non-linear term violates the above-mentioned scale invariance. The singular character of 
the perturbation is reflected in the fact that the series does not converge uniformly in perturbation theory which, 
in the case of an expansion in a set of eigenfunctions of the unperturbed problem, manifests itself in the occurrence 
of secular terms in the case of a discrete eigenvalue spectrum and the divergence of the expansion coefficients in 
the case of a continuous spectrum. In particular, this is seen from formula (1.5), which should be regarded as the 
result of the summation of the infinite series of perturbation theory in powers of ~ (actually, in powers of Lt), which 
does not satisfy the criterion for uniform convergence and is considered as an asymptotic series. 

The renormalization group (RG) method, which arose for the first time in quantum field theory [9] and was 
subsequently successfully applied in the theory of critical phenomena in the case of phase transitions of the second 
kind [5, 6, 10], is very convenient for summing the infinite series of perturbation theory and is overcoming the 
difficulties which arise due to the presence of secular terms. 3"~vo somewhat differing formulations of the RG method 
exist. In the so-called field formulation, the RG method enables one, on the basis of a knowledge of the first term 
of the series in perturbation theory, to predict the structure of the subsequent terms of the series and to sum a 
certain infinite subsequence of the complete series starting from the existence of a certain arbitrariness in the 
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subdivision of the system being investigated into an unperturbed part and the perturbation (renormalization 
invarianee) [9]. Within the framework of the other (the Wilson) formulation, a system of many interacting modes, 
which corresponds to the non-linear equation, is considered and equations for the low-frequency (slow) modes 
are obtained as a result of successive iterative averaging over the high-frequency (fast) modes [10]. When the 
frequencies of the slow and fast modes are separated, the idea behind this method is equivalent to the Krylov- 
Bogolyubov method of averaging [11], which is used in the theory of non-linear vibrations. In a substantially 
multimode system, when the modes of all scales are equally important in understanding the behaviour of the whole 
system, the property of renormalization invariance implies that the behaviour of the system in the asymptotic domain 
of long times is independent of the method of separation of the spectrum into slow and fast parts. 

Only the first (field) approach is used below to investigate problem (1.1), (1.2) and a detailed explanation of all 
of the successive stages in the use of the RG method is given. It is assumed here that the reader does not have 
any prior knowledge of the ideas and techniques of the RG method. 

2. THE CONSTRUCTION OF A RENORMALIZED PERTURBATION THEORY 

We will change from differential equation (1.1) with initial condition (1.2) to the integral equation 

t 

C(r,t) = QoG(r,t) - 7~ dt'~dr'G(r - r',t - t')Cl+2S(r',t ") (2.1) 
0 

Successive iteration of this equation leads to a representation of the solution in the form of a series 
in powers of the non-linearity parameter X (actually in powers of ;q2~+2~). The solution of the linear 
problem is used as the zeroth approximation here. In order to construct a renormalized perturbation 
theory we renormalize the parameter Q0, which involves making the substitution Q0 -'~ Q = ZQo in 
(2.1), where Z is the renormalization constant. In order to compensate for the effect of renormaliza- 
tion, we add a so-called counter term of the form (Q0 - Q)G(r, t) = (Z -1 - 1)QG(r, t) to the right-hand 
side of (2.1) and we treat the non-linear term plus the counter term as the perturbation. As a result of 
successive iteration, a renormalized perturbation theory series in powers of the parameter ~q21÷28 is 
obtained. However, the choice of the renormalization constant Z (and, thereby, the parameter Q) is 
ambiguous, that is, the subdivision of the fight-hand side of (2.1) into a perturbed part and a perturbation 
is non-unique. While each term of the perturbation theory series will depend on the choice of Z, the 
complete series must be independent of the choice of the renormalization constant, that is, the complete 
series must possess renormalization invarianee. The requirement that the complete perturbation theory 
series is renormalization invariant leads to the existence of a certain link between the different terms 
in the series, and it thereby becomes possible, from a knowledge of the lower approximations of 
perturbation theory, to find the subsequent terms of the series without recourse to an iterative procedure 
and a calculation of the higher approximations. 

In the first approximation of perturbation theory, the solution can be represented in the form 

l 

CCt)(r,t)=QG(r,t)-XQl+2s~ dt']dr'G(r-r' , t-t ')Gt+2S(r',t ')+(Z -I -l)QG(r,t)  (2.2) 
0 

Using the actual form of Green's function for the diffusion equation (the second formula of (1.4)). 
It can be shown that the relations 

Gl+~S(r, t) = (Dot) 1 + 28 (1 + 28)d/2(4~) 8a r , ~ ,  A= (2.3) 

hold. 
Green's function of the diffusion equation satisfies the so-called half-group law which, when applied 

to Markov random processes is usually known as the Einstein-Kolmogorov equation for conditional 
probability [12] 

C(r , t - to)=SG(r-r ' , t - t ' )G(r ' , t ' - to)dr"  ( t>~t '~t  o) (2.4) 

Using (2.3) and (2.4), we integrate over r" in Eq. (2.2) and find 

Z42,+2s t 1 _(  28 ,~ , 
C O ) ( r , t ) = Q G ( r , t ) - ~ a S  t -~Ci[r , t -~-~-~t  Jdt +(Z -i-1)QG(r,t)  (2.5) 

o8 o 



410 E.V. Teodorovich 

The dependence of Green's  function on t' under the integral sign on the right-hand side of (2.5) can 
be neglected for small & For sufficiently large 8 (Sd t> 1), the domain t' ~- 0 makes the main contribution 
to the integral over t" and it again becomes possible to neglect the dependence of G on t' under the 
integral sign. In this approximation 

C (') (r, t) - q°)(t)G(r, t), 

b ~  
tk(a,b)= ! "-~ 

F ~2s 
q(l)(t) = QL1 ---D~-0~AlM(0,t) 

(2.6) 

that is, the solution has the form of a diffusively spreading density distribution of a substance of which 
there is a variable total amount q(t). 

In formula (2.6), the renormalization constant Z and the quantity associated with it Q = ZQo are 
arbitrary. We now need to satisfy the normalization condition, according to which the amount of the 
substance at the instant of time t = x must be equated to Q, that is, q(x) = Q. We find the renormalized 
constant Z from this condition and obtain 

[ ~,Q2S ] EQ2~xl-~t Al~t(1,tlx)l 
q(t)=Q[l-'-D~-ou alsd(x't)J=Q[1 Do ~ (2.7) 

As a result, the arbitrariness in the choice of the renormalization constant Z is replaced by an 
arbitrariness in the choice of the normalization point x. 

3. R E N O R M A L I Z A T I O N  G R O U P  I N V A R I A N C E  A N D  
T H E  R E N O R M A L I Z A T I O N  G R O U P  M E T H O D  

The time-dependence of the amount of substance is a certain function of the parameters ~,, Do, Q, 
x and, in this case, due to the arbitrariness in the choice of x, the form of the function must not be 
changed on changing from one set of parameters x, Q to another set x~, Q1, which also reflects the 
property of renormalization invariance. In a wider sense, this property has been given the name of 
functional self-similarity [10], which generalizes the concept of self-modelling (self-similarity), which 
is associated with arbitrariness solely in the choice of scales. The universality of the geometry of 
hydrodynamic flows, which depend solely on the Reynolds number Re = lu/v but not on the characteristic 
scales of length, l, velocity, u, and the coefficient of kinematic viscosity, v is the simplest example of 
self-similarity. 

On the basis of dimensional considerations and the requirement of renormalization invariance, it is 
possible to write 

q(t) = Qf(x,g) = QIf(xl,gl ) 

t ~,Q25x'-~ t ~,Q2Sxlt-~ (~-~ ) (3.1) 
x = - - ,  g =  , x l = - -  gl = , Q l = Q f  ,g 

x Do ~ x I ' D~' 

The last equality of (3.1) follows from the relation f(1, q) = 1 which, in turn, follows from the normaliza- 
tion condition q(x) = Q. 

We now introduce the new dimensionless function 

= Zz/(t)2~t l-sd / D~ = gf28(x,g)x I-~ (3.2) 

This function turns out to be an invariant of the transformation x ~ xl, Q ~ Q1, that is 

~(x, g) = g(xl, gt) (3.3) 

The function g(x, g) is a dimensionless, time-dependent, real parameter of the expression in a 
perturbation theory series. By virtue of the condition f(1,  g) = 1, this function obeys the normalization 
condition 
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~(1, g) = g (3.4) 

and satisfies the functional equation 

~(x,g)=ff,(xla, ~(a,g)), a=xj  Ix  (3.5) 

It follows from (3.4) and (3.5) that the set of transformations (x, g) --4 (xl, gl) satisfies the group 
composition law (x, g) --> (x2, g2) = (x, g) ---> (Zl, gl) ---> (x2, g2) it has identity and inverse elements and 
thereby forms a continuous single parameter group which is called the renormalization group (RG). 

On differentiating (3.5) with respect to a and then putting a = 1, we find the differential equation 
of the R G  

- x  = 0, 13(g)= ax (3.6) 

Equation (3.6) is too general; all the actual information concerning the system under consideration 
is contained in the so-called renormalization group function (the RG-function) ~(g) which is determined, 
according to (3.6), by the behaviour of the function g (x, g) close to the normalization point x = 1. The 
RG-function, 13(g), plays the role of an infinitesimal transformation operator (a generator) of  the 
renormalization group. 

The R G  method consists of the proposal to use the renormalized perturbation theory to calculate 
the function 13(g) [9]. If the function 13 is calculated in the lowest approximation of  perturbation theory 
and substituted into Eq. (3.6), then the subsequent solution of this equation will correspond to the 
summation of a certain infinite subsequence of  the full perturbation theory series. 

The following illustrative example can be given for clarification. If it is known that a certain quantity is the sum 
of a geometric progression, then a knowledge of the first two terms of the sum enables one to find all the remaining 
terms and the sum. The requirement of renormalization group invariance, which is expressed by the RG equations 
(3.5) and (3.6), is the analogue, in the renormalization group approach, of the knowledge of the fact that the 
treatment refers to a geometrical progression. 

4. S O L U T I O N  OF T H E  R E N O R M A L I Z A T I O N  G R O U P  E Q U A T I O N S  

It follows from (2.7) that 

f(x,  g) --- 1 - A g l u ( 1 ,  x) (4.1) 

Using (3.6) and (4.1), we find 

~(g) = -25Ag(g - g* ), g* = (I - ~/)  / (25A) (4.2) 

Problem (3.6) for case (4.2) will be solved later. Now we shall discuss the asymptotic form of the 
solution in the case of an RG-function of general form. According to the methods of classical mechanics, 
the asymptotic solution of equations of the type (3.6) is given by the fixed points gi, which satisfy the 
condition 13(gi) = 0. Here, a fixed point is stable (attracting) in the domain of  large values of x = t/x 
subject to the condition ~13(g)f'0glg = gi < 0, and unstable (repelling) otherwise. If there is an asymptotically 
stable fixed point, then, according to (3.2), the asymptotic form of the functionf(x, g) will have the form 

)~x, g) ~ x "(1''~/(2a) (4.3) 

It follows from (4.2) that there are two fixed points: the trivial pointg  = 0, which corresponds to the 
fact that there are no non-linear interactions (asymptotic freedom), and the non-trivial point g = g* 
when the non-linear term turns out to be substantial. According to (4.2), the non-trivial fixed point g* 
will be stable in the domain of  long times subject to the condition 6at < 1 and the trivial fixed point is 
found to be stable when 8d > 1. When ~d = 1, the trivial and non-trivial fixed points merge and, in 
order to determine the asymptotic form, it is necessary to seek a new stable fixed point by calculating 
the renormalization group function (the RG-function) in higher approximations of  perturbation theory. 
The value of the dimension d c =  1/8 at which there is a crossover in the stability of  the fixed points is 
called the crossover dimension. 
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For binary-type reactions (5 = 1/2), the crossover dimension will correspond to the planar case 
(de = 2). Hence, in the ease of binary-type reactions, a non-trivial state of asymptotic behaviour will 
only occur in a one-dimensional problem, the two-dimensional ease requires special consideration and 
the absence of a non-linear interaction (asymptotic freedom) will correspond to the three-dimensional 
case .  

The form of the RG-funetion for three types of asymptotic behaviour of the solution is shown in 
Fig. 1. 

In order to investigate when the asymptotic state is reached, we will find the exact solution of Eq. 
(3.6), which corresponds to an RG-function of the form (4.2). This solution is found by the method of 
characteristics and is given in implicit form by the Gell-Mann-Low formula [9] 

~(jg)x. dg" = lnx (4.4) 
P(g') 

On substituting (4.2) into (4_4), integrating with respect to g' and solving Eq. (4.4) for the unknown 
function, we find the function g(x, g), a knowledge of which enables us, using (3.2), to obtain 

]-~ 1 (4.5) f ( x ,g )=  l+--~-g,(x i-a/-l) ' ~= 2"-'-~ 
g 

On returning to the initial (unrenormalized) parameters and introducing the characteristic time T 
by the relation ~Q~0/D~0 = T t~'-l, we find 

qu,=eoL,+7[,71j (4.6) 

Result (1.5), which corresponds to the exact solution of the problem, can be obtained in the limiting 
case when 6 --> 0 using the relation [q(t)/D.o] ~ ---- 1 + 261n[q(t)/Qo]. When 5 = 0, application of the RG- 
method actually reproduces the method of variation of a constant which is well known in the theory of 
linear differential equations. 

The dependence of the amount of substance on the dimensionless time, t/T, corresponding to formula 
(4.6), is shown in Fig. 2 (curve 1) for the case of a one-dimensional diffusion process (d = 1) when 
there are binary-type reactions (8 = 1/2). For comparison, we also show curve 2, which corresponds to 
the asymptotic power solution. It can be seen that an asymptotic state is reached quite slowly in this 
case .  

5. R E F I N E M E N T  OF THE APPROXIMATION OF SMALL 8 

It was found that in the formula of the first approximation of renormalization perturbation theory 
(2.5), the dependence of Green's function in the integrand on t' should be neglected. As a result, the 
effect of non-linearity was reduced to the appearance of a time-dependence of the amplitude factor 
associated with the amount of substance in the system and to the invariability of the pattern for the 
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evolution of the spatial density distribution. It can be shown that taking account of the following term 
in the expansion with respect to 8 in (2.5) reduces to the replacement of the diffusion coefficient by a 
certain effective, time-dependent diffusion coefficient D(t), which determines the rate of the spreading 
of the density distribution of the substance. 

The preceding treatment, when account is taken of the change in the rate of diffusive spreading due 
to non-linearity without a detailed exposition of the RG method and when attention is solely directed 
to the differences which arise, is reproduced below within the framework of the renormalization group 
approach. These differences mainly lie in the fact that renormalization of the initial conditions was 
carried out in the case treated above and that the diffusion coefficient in the initial differential equation 
is also renormalized in the given treatment. 

We now renormalize the diffusion coefficient in the initial equation (1.1) by means of the substitution 
Do --0 D = Z1 Do and add a counter term which compensates for this change to the right-hand side. 
After changing from the differential equation to the integral equation and subsequent renormalization 
of the parameter Q, we obtain an equation which differs from (2.2) in that there is an additional term 
on the right-hand side which is equal to 

t 
(Z~ -I - 1)DA~ dt'~ dr" G(r - r ' ,  t - t ' )C(r ' ,  t ')  

0 

Here, Green's function is constructed using the renormalized value of D rather than Do as in 
Section 2. 

On carrying out similar calculations in the lowest non-vanishing approximation of perturbation theory 
while taking account of the next term in the expansion in 8 of the argument of Green's function in the 
integrand with respect to t' and using the equations for the renormalization of Green's function, we 
find 

c(l)(r,t)={Q ~,Q1+28 1)Q}G(r,t)+ D ~ AlM(O,t )+(  Z - I -  

~,Q1+28 2~JD A l ~ _ l ( O , t ) + ( Z { l _ l ) Q D t } A G ( r , t )  (5.1) 
+ D &t (1 + 28) &t 

The terms which are proportional to G are treated in a similar manner. 
To determine the reormalization constant of the diffusion coefficient Z1 we require that, when t = 

z, the correction to the renormalized diffusion coefficient, which is proportional to AG, should vanish. 
As a result, in the lowest approximation of perturbation theory, we find 

= ~,Q2~i 28 A 1 Do = I ,  
Z I (x) D D &t 1 + 28 

26 1 -~3d 
2a = 

1+26 2-~)d 

18a-l (0, %) = 1 + 2aAgl&t (0, z) 

(5.2) 

(5.3) 

By (5.2), the function fl(x, g) in the lowest approximation of perturbation theory has the form 

~,Q28,~I-M 
f l ( x , g )= l+2aAg l&t (1 , x ) ,  g =  O& t (5.4) 

By analogy with (3.2), we introduce the function 

~(x,g) = 7kz /28( t ) t l -~  f '28(x'g) x l-M 
bSa(t ) = g ASa(x,g) 

(5.5) 

[)(t) = DoZ l (t) = DZ  l (t)Z~ I ("c) = Dfl (t I x,~,QZS"r |-28 1 D &t) 

The requirement that the corrections to the diffusion coefficient should vanish corresponds to the 
normalization condition D(t) [t=~ = D, from which it follows that 
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which is an invariant of the renormalization group transformation x ---> '~1, Q ---> Q1, D ---> D1. 
The quantity g(x, g) is calculated in the same way as in Section 2; the sole difference lies in the 

substitution A ---> A* = A(1 + ad) in the corresponding formulae. However, the calculation of the 
functionsf(x, g) andf(x, g) now turns out to be not so trivial and it is now necessary additionally to solve 
the equations separately f o r f  and ft. 

It follows from (3.1) that the function f(x, g) (as well as the function fl(X, g) satisfies the R G  functional 
equation 

f(x, g) =f(ot, g)f(xlo~, ~(0~, g) ) (5.6) 

Differentiating Eq. (5.6) with respect to ot and then putting tx = 1, we obtain the R G  differential 
equation for f(x, g) (the same equation is obtained for fl(x, g)) 

- x  +[~(g) ln f (x ,g)=-y(g) ,  y(g )=  Ox x---I (5.7) 

The general solution of the linear equation (5.7) can be represented in the form of a sum of the 
particular solution of the inhomogeneous equation ~(g) and thegeneral  solution of the homogeneous 
equation, which is an arbitrary function of the characteristic F(g (x, g)) 

lnf(x, g) = F(~(x, g)) + ~(g) (5.8) 

Puttingx = 1 in (5.8) and making use of the normalization conditions (3.1) and (3.4), we find 

F(g) = -O(g) (5.9) 

whence it follows that 

exp{-t~(g(x, g))} g y(g)dg 
f(x,  g) = @(g) = - j (5.10) 

exp{-@(g)} ' I](g) 

On calculating ~(g) and Yl(g) from (4.1) and (5.4), using (5.9) and (5.10) we obtain formulae analogous 
to (4.5). 

Returning from the renormalized values of Q and D to the initial parameters Q0, Do and using the 
characteristic time T, we find formulae for f(x, g) and fl(x, g), analogous to (4.6), in which 

l - ~ d  1 a 
g* = , , - (5.11) 

2 6 ( l + a d )  ~ =  2 6 ( l + a d )  ~t 8 ( l+a d )  

Note that formula (4.5), which was obtained without taking account of the renormalization of the 
diffusion coefficient, is reproduced when a = 0. 

If an effective time l is now introduced, using the relation [)(t) t = Dot, then, in terms of this effective 
time, the solution can be represented in the form 

C(r, t) = Qo(t/t)-v(2")G(r,t) (5.12) 

The relation between the dimensionless effective time tiT and the dimensionless time t/T is as follows: 

t r , c 7-- Li+TkTj j (5.13) 

The corresponding curve for the case when ~ = 1/2 and d = 1 is shown in Fig. 2 (curve 3) and, for 
comparison, the dependence t = t is represented by the dashed line. 

Since, according to (5.13), t > t when d < tic, this means that taking account of non-linear effects 
leads to an increase in the rate of  spreading of the initially localized density distribution and the radius 

1/2+ct of the domain of  localization increases as r - t , where 

1 - ~  a 
¢t= 2~ l + a d  (5.14) 
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Note that the exponent a is universal, that is, it is independent of the values of the characteristic 
parameters of the problem Q0, Do, ~, and is determined solely by the scale d and the order of the 
reaction 5. 

6. D I S C U S S I O N  

The principal aim of this paper is to demonstrate the possibility of using a renormalization group 
approach in problem (1.1), (1.2). However, in order to reveal the possibilities and means of applying 
the RG method to other problems in mathematical physics it is useful to reproduce the logical basis 
of the method employed above, which has not always been seen against the background of the 
formal calculations, and to direct attention to the non-trivial results obtained above using the RG 
method. 

At first glance it may appear that, due to diffusive spreading of the initially localized density distribution 
of a substance and the decrease in concentration as a consequence of non-linear attenuation at long 
times, a state of asymptotic freedom must be reached for which the non-linear term in Eq. (1.1) becomes 
negligibly small compared with the diffusion term, the evolution of the concentration distribution will 
be solely determined by diffusion processes, and the asymptotic form will turn out to be self-similar. 
However, the above analysis showed that a self-similar state of asymptotic freedom is only attained in 
the case when the space dimension exceeds a certain critical value d c = 1/& The result which has been 
obtained leads to the conclusion that a non-trivial state is reached when d <dc for which a certain stable 
balance is established between the diffusive spreading processes and non-linear attenuation. The 
evolution of the spatial distribution is found to be self-similar, that is, scale similarity (scaling) holds 
at different times. According to the terminology adopted, this self-similarity is incomplete [2] since the 
exponential is not determined by dimension considerations. The value of the incomplete self-similarity 
factor which has been found turns out to be universal, that is, it is independent of the characteristic 
parameters of the problem and, in particular, the non-linear interaction constant k. This is indicated 
by the fact that the dependence of the solution on k is not analytic at the point ~ = 0 which also confirms 
the singular nature of the perturbations, associated with the breakdown of the above-mentioned sym- 
metry properties of the unperturbed equation. 

The question of the degree of accuracy and the domain of applicability of the solution which has 
been obtained as well as the connection between the RG method and perturbation theory is important. 
On the one hand, the use of an iterative procedure when constructing the solution means that a sequence 
of perturbation theories is sought depending on the magnitude of the non-linear interaction constant. 
However, the formal expansion oarameter 9~Q~S/D2o s, which emerges in this case, has a non-zero dimen- 

28 1-Sd M sion, and the quantity 7~Qo t /Do, which is time-dependent, is the actual expansion parameter. 
Although the renormalization procedure Qo --> Q, Do ~ D also leads to a state of affairs where the 
actual expansion parameter, constructed using the renormalized values of the parameters of the prob- 
lems, is found to be smaller than the parameter constructed using initial (unrenormalized) values, this 
only leads to an improvement in the rate of convergence of the series in the case of a specified final 
time. However, the determination of the asymptotic form for long periods of time remains outside the 
scope of standard perturbation theory. 

The property of renormalized invariance, which establishes a definite link between the different terms 
of a perturbation theory series, turns out to be extremely useful in determining the asymptotic form. 
As a result of renormalization invariance, the possibility arises of finding these terms and summing the 
whole series (or an infinite subsequence of this series) without making any assumptions regarding the 
smallness of the expansion parameter. 

In this case, the possibility of carrying out a renormalization procedure (renormalizability) means 
that the effect of non-linear perturbations does not change the overall density distribution pattern and 
only leads to the total amount of the substance, and the diffusion coefficient becoming time-dependent. 
As a result, the search for the solution reduces to the determination of the corresponding dependences. 
The time-dependent quantities q(t) and D(t) differ substantially from the initial constant values of 
Q0 and Do, and this is a formal indication of the non-applicability of perturbation theory. Renormalizafion 
means the replacement of the initial values by renormalized values, which are selected in such a way 
that the renormalized values are identical with the effective values at the point of normalization t = x. 
According to the renormalizability hypothesis, close to the point of normalization the solution will have 
the form of the distribution when there are no non-linear interactions but with the renormalized values 
of the parameters Q and D. The large corrections which thereby arise in the zeroth approximation due 
to renormalization are found to be included in the zeroth approximation of renormalized perturbation 
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theory, which can give reasonable results in a bounded domain and can be used to calculate the RG 
function which is determined by the behaviour of the solution at the point of normalization. Unlike in 
quantum field theory, where renormalizability is associated with the possibility of removing divergences, 
in the problem under consideration renormalizability may turn out to be approximate and is only valid 
in a certain asymptotic domain. It is seem from the calculations which have been carried out (formulae 
(2.6) and (5.2)) that renormalization is found to be possible in the approximation of small values of 
the exponent 8. However, this does not mean that a perturbation theory is constructed with respect to 
8 since the solution for the case when 8 = 0 is not used as the zeroth approximation. Moreover, it is 
found that the exactly solvable case when ~i = 0 is obtained in the limit when 8 -~ 0 by the R G  method 
using the lowest approximation of perturbation theory with respect to ~, when calculating the RG 
function. 

As 8 increases, the property of renormalizability, which, in the case under consideration, reduces to 
the possibility of neglecting the dependence on t" in Green's function in the integrand in formula (2.5) 
and the formula of Section 5 corresponding to it, which has not been written out, becomes ever more 
approximate. However, when 8 is increased further, when 8 I> 1/d, the integrals over t' become singular 
at the point t" = 0. In this case, the possibility arises of replacing Green's function by its value at the 
singular point and taking it outside the integral sign (formulae (2.6) and (5.1)). Such a procedure has 
been used in the analysis, using the RG method, of a certain version of a non-linear generalization of 
the diffusion equation and a value of the partial self-similarity exponent was obtained which is in good 
agreement with the results of a numerical solution [14, 15]. Hence, the use of the formulae which have 
been obtained in the case of arbitrary 8 is an extrapolation of the property of renormalizability which 
holds when 8 <~ i and when ~i/> 1/d in the domain of arbitrary 8. This approach is similar to the method 
of scale regularization [4, 14] used in quantum field theory, according to which integrals which diverge 
in the case of the physical dimension of the space are replaced by integrals obtained in the case of a 
analytic extension of the dimension of the space of the corresponding integrals for a dimension when 
these integrals are well defined (finite). In order to illustrate this idea, we point to the fact that the 
gamma-function for negative values of the argument is not defined by means of an Euler integral (which 
is divergent) but using the recurrence formula r(x + 1) = xr(x) [16]. 

Note that, in the case of a dimension close to the critical value, that is, when d = d c  + e(e --) 0), the 
actual expansion parameter in the perturbation theory series in the asymptotic domain g* is found to 
be proportional to e. The e-expansion procedure, which has been successfully used in the theory of critical 
phenomena, reduces to the construction of a perturbation theory in powers of e with a subsequent 
analytic extension with respect to e to a point corresponding to the dimension of real space [5, 6]. The 
analogy with the theory of critical phenomena can serve as some substantiation for the approximations 
used in obtaining formulae (2.6) and (5.2). 

In conclusion, we point out that an analogous treatment of transport phenomena, which are accom- 
panied by the production of a substance (~, < 0), leads to the fact that a non-trivial fixed point will be 
stable when d > d c  and a state of asymptotic freedom is attained when d < de. The effective time will 
decrease as the real time increases, which denotes a tendency to localization of initially weakly localized 
distributions and an increase in their slope (states with peaking [1]). 

The research was partially supported by the Russian Foundation for Basic Research (96-01-00748 
and 96-01-01221). 
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